CNC Cutting Tools: Categories and Features

CNC cutting tools can be divided into two main groups: traditional tools and modular tools. Modular tools are the tools of progress.

The chief benefits of modular tools include reducing tool modification downtime, developing production and processing time, speeding up tool alteration and installation time, reducing the cost of small batch production, and developing the grade of standardization and rationalization of the instrument.

Other advantages include advancing controlling and flexible processing instrument levels, expanding the use of the tool, providing complete play to the performance of the CNC cutting tool, and efficiently removing disruptions.

In fact, due to the modules of the expansion of the tool, the CNC tool has three classifications: the turning tool system, the system of drilling tools and the boring and milling cutter system.

CNC Cutting Tools Cutting Process Grouping

The CNC cutter, from the cutting process, can be divided into the following features: the turning tool is remarkably round, has external threaded insertions, interior threading insertions, grooving, a hirth ring groove, and a cut off. CNC lathe engine usually uses standard file indexable cutting tools.

The engine file indexable cutter blade and cutter body has a standard blade element with carbide-covered concreted and high speed steel.

The CNC lathe engine file can transfer the bit tool to a cylinder-shaped device, exterior thread device, internal circle device, internal thread device, cutting device hole processing device (together with the center hole drills, boring tools, taps, etc.). Engine clip indexable tool holding throwaway films are typically screws, securing the pressure plate, bar pin or wedge configuration.

CNC Cutting Tool Characteristics

To make them more effective and easier to change out compared to CNC machining instruments, metal cutting tools should have a universal blade and knife holder as well as standardized serialization. The toughness of the blade contributes to the financial value of the cutter.

The standardization of the tool’s geometric parameters and cutting parameters, the blade elements and cutting parameters and the element being processed should match each other.

The instrument should be highly accurate, including the correctness of the shape of the tool, the accuracy of the site of the blade and shaft of the machine tool spindle, and the blade and hilt translocation and disassembly recurrence accurateness.

Shaft power, stiffness and attire resistance are superior. The fitted load of the tool holder or tool system is restricted. The site and alignment of the blade and shaft cut have definite necessities. The blade, hilt tracing datum and automatic device modification system should be optimized.